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Abstract. We present a manifestly covariant quantization procedure based on the de Donder–Weyl Hamil-
tonian formulation of classical field theory. This procedure agrees with conventional canonical quantization
only if the parameter space is d= 1 dimensional time. In d > 1 quantization requires a fundamental length
scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical
emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the
fields, and we apply the formalism to a number of simple examples. These show that covariant canonical
quantization produces both the Klein–Gordon and the Dirac equation, while also predicting the existence of
discrete towers of identically charged fermions with different masses. Covariant canonical quantization can
thus be understood as a “first” or pre-quantization within the framework of conventional QFT.

PACS. 04.62.+v; 11.10.Ef; 12.10.Kt

1 Introduction

The apparent incompatibility between general relativity
and quantum mechanics has long been a topic of con-
cern and interest in the theoretical physics community.
Diffeomorphism invariance has to be satisfied on the side
of a general relativistic theory, in particular denying any
fundamental distinction between the notions of space and
time; but it is less clear how to achieve this requirement
in, or properly translate it to, a quantum theory. This par-
ticularly applies to the canonical formulation of quantum
mechanics and quantum field theory based on a Hamilto-
nian treatment. A neat way around this problem may be
seen in path integral quantization which explains why the
predictions of the quantized theory still possess the rela-
tivistic symmetries of the classical theory; but from the
Hamiltonian point of view with its explicit space–time split
this is not a special merit of the quantization procedure.
This motivates the question whether there is a covariant
extension of Hamiltonian methods which also allows for
a manifestly covariant quantization procedure.
On the level of classical field theory there is indeed

a Hamiltonian formulation that does not rely on singling
out a time coordinate but treats all spacetime coordinates
equally throughout. This theory was presented already in
the nineteen-thirties by de Donder [1] andWeyl [2]. Full co-
variance is maintained through the use of multi-momenta,
where one momentum is associated to each partial deriva-
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tive of the fields. While providing a fully covariant equiva-
lent to the standard Hamiltonian formulation of field the-
ory (in the sense of providing the same solutions), the
de Donder–Weyl formulation of classical dynamics has not
received too much attention. Only recently have there been
several attempts to quantize field theories on its basis. An
early attempt by Good [3, 4] has been shown to disagree
with ordinary quantum mechanics and to give incorrect
predictions for the hydrogen spectrum [5]. Subsequently,
a quantum equation based on de Donder–Weyl theory
has been conjectured by Kanatchikov [6] and Navarro [7].
There have also been attempts to obtain a path integral
formulation [8–10] and a version of Bohmian mechan-
ics [11, 12] based on de Donder–Weyl dynamics. Other re-
cent applications of the de Donder–Weyl formulation of
field theory include a derivation of the Ashtekar–Wheeler–
DeWitt equation of canonical quantum gravity [13].
In this paper, after a brief review of some of the elem-

ents of the classical de Donder–Weyl theory in Sect. 2, we
will formulate a covariant Poisson bracket. In Sect. 3 we
will then proceed to apply the Dirac quantization postulate
to the latter. If supplemented with a second, geometrically
motivated, quantization postulate, this leads to the same
quantum evolution equation that had previously been con-
jectured on the basis of analogies [7, 14]. Our approach
for the first time presents a derivation of this equation,
which unifies both the Schrödinger and the Dirac equation,
from first principles. We go on to develop the quantum
theory in the covariant Schrödinger picture; in particular,
we will discuss the representation of operators, the con-
sequences of an indefinite scalar product on the Hilbert
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space which immediately follows from the requirements of
covariance, and the probability interpretation of the wave
functions. We apply the theory to a number of basic prob-
lems in Sect. 4, with sometimes surprising results.
Among them are a new derivation of the Klein–Gordon

equation that makes no use of the relativistic energy-
momentum relation, the emergence of spinors from the
quantization of scalar theories, and in particular the emer-
gence of the Dirac equation from the quantization of any
scalar field action. This means that the quantization pro-
cedure here presented does not replace quantum field the-
ory; instead, it is found to provide a supplementary “first
quantization.” A result of potential phenomenological in-
terest is the prediction of towers of identically charged
fermions that differ only by their masses, providing a qual-
itative explanation for the generations in the standard
model.

2 Covariant Hamiltonians
in classical field theory

This section reviews the covariant Hamiltonian treatment
of classical field theories, discussed first by de Donder and
Weyl [1, 2], which is based on the introduction of multi-
momenta associated to the partial derivatives of the fields.
We then define a new covariant Poisson bracket to rewrite
the general phase space evolution equations in an equiva-
lent form suitable for quantization.

2.1 Field theory in the multi-symplectic formalism

Consider a geometrically well-defined field theory which
is diffeomorphism invariant on a d-dimensional Lorentzian
background manifold Σ. We will call this background
manifold the parameter space of the theory, coordinatized
by parameters {σa} with corresponding partial derivatives
∂a = ∂/∂σ

a. Classical fields qi are functions on this mani-
fold, i.e.,

qi : Σ→ R . (1)

In some theories it is convenient to consider a set of n
fields

{
qi
}
as coordinates of a second, n-dimensional, tar-

get space manifold M ; in this case, requiring the theory
to be geometrically well-defined means it should obey the
further diffeomorphism invariance on M . The notion of
a target space manifold is, however, secondary. We define
the theory on Σ by its action, which is obtained from the
integration overΣ of a scalar Lagrangian as follows:

S =

∫

Σ

ddσ
√
−g L

(
qi,∇a q

j
)
. (2)

Note that the standard quadratic kinetic term in the La-
grangian depends on ∇aqi. Forming a scalar from these
(covariant) derivatives necessitates the existence of a non-
degenerate, and hence invertible, metric g on Σ, the signa-
ture of which we take to be (−,+, . . . ,+). The determinant

of this metric appears in the integration measure. An ex-
plicit dependence of L on the coordinates of Σ is excluded
by the requirement of diffeomorphism invariance.
The equations of motion of the theory (2) are the Euler–

Lagrange equations derived by variation of the action with
respect to the fields,

∇a
∂L

∂∇a qi
−
∂L

∂qi
= 0 , (3)

where the covariant derivative involves the unique tor-
sion free and metric compatible Levi–Civita connection
of g. The necessary boundary condition requires a vanish-
ing integral,

∫

∂Σ

dSa
∂L

∂∇aqi
δqi = 0 . (4)

The above equations of motion are partial differential
equations of second order, for first order Lagrangians. To
reduce the order, the standard Hamiltonian treatment in-
troduces canonical momenta pi = ∂L/∂∂0q

i. Clearly, these
momenta are non-covariant quantities, as their definition
explicitly depends on the choice of time and hence on
the choice of coordinate system on Σ. It follows that
the usual Hamiltonian function, depending on the non-
covariant canonical momenta, cannot be a scalar.
To remedy this apparent difficulty, we introduce the

manifestly covariant multi-momenta associated to each
partial derivative of the fields,

pai =
∂L

∂∇aqi
, (5)

which transform as the components of a vector in the pa-
rameter space tangent bundle TΣ (and as those of a differ-
ential form in T ∗M , if the fields form coordinates of a tar-
get space manifold). We assume Lagrangians such that the
multi-momenta as functions of the fields and their par-
tial derivatives may be solved for these derivatives to yield
∇aqi

(
qj , pbk

)
. In terms of the new covariant momenta, we

may then also define the covariant Hamiltonian

H = pai∇aq
i−L , (6)

which is a function of the new independent variables qi and
pai and transforms as a diffeomorphism scalar on the pa-
rameter space Σ.
The Euler–Lagrange equations imply the covariant

Hamiltonian equations

∂H

∂qi
=−∇a p

a
i , (7a)

∂H

∂pai
=∇a q

i . (7b)

Conversely, given a covariant Hamiltonian H
(
qi, paj

)
, we

may define a LagrangianL
(
qi,∇a qj

)
via (6). Then the co-

variant Hamiltonian equations imply the Euler–Lagrange
equations. Diffeomorphism invariance again implies that
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the Hamiltonian cannot depend explicitly on the coordi-
nates of Σ. Below we will see that the covariant Hamilto-
nian formalism nicely reduces to conventional Hamiltonian
mechanics if the parameter space Σ is one-dimensional.

2.2 The classical Dirac field as an example

As an example for the powerful finite-dimensional phase
space formalism of de Donder and Weyl, we take a brief
look at the massive Dirac field. The Lagrangian in its sym-
metrical form is given by

L=
1

2
ψ̄γa∇aψ−

1

2
∇aψ̄γ

aψ−Mψ̄ψ , (8)

where we have introduced the Dirac matrices γa of the
(curved) background, on which we will comment in more
detail below. We treat ψ and ψ̄ as independent, so that the
conjugate covariant momenta follow by definition as

πaψ =
1

2
ψ̄γa , πaψ̄ =−

1

2
γaψ . (9)

These relations are, in fact, primary constraints, relating
the spinors and their conjugate momenta. Although these
momenta are not invertible to obtain ∇aψ(ψ, ψ̄, πbψ, π

c
ψ̄
),

and similarly ∇aψ̄, we can define the covariant Hamilto-
nian as

H =Mψ̄ψ+
(
πaψ− ψ̄γ

a/2
)
λa+ λ̄a

(
πaψ̄+γ

aψ/2
)
, (10)

where the constraints have been added with the help of
spinorial Lagrange multipliers λa and λ̄a. The Dirac equa-
tion and its conjugate now follow immediately from the
covariant Hamiltonian equations (7) above, utilizing the
constraint equations.

2.3 Definition of a covariant Poisson bracket

With the aim of facilitating an easier transition to a quan-
tum theory, we consider Poisson brackets in the new for-
malism. A covariant extension of the standard Poisson
bracket is given by the definition

{f, g}a =
∂f

∂qi
∂g

∂pai
−
∂f

∂pai

∂g

∂qi
(11)

for any two phase space functions f and g depending on
the Hamiltonian variables qi and pai . This bracket carries
a further index, thus mapping two functions of the canon-
ical variables to a differential form in T ∗Σ. In general,
it changes the number of indices and with it the tensor
structure defined by its arguments. This obstructs the use-
fulness of this bracket definition, as valuable properties of
the Poisson bracket are lost. This applies in particular to
the important Jacobi identity, which provides the algebra
of phase space functions with the structure of a Lie algebra.
Here the Jacobi identity is valid only for equal subscripts,
i.e., for expressions of the form {{f, g}a, h}a, but these are
not allowed as tensors on Σ.

Hence we are led to amending the bracket definition and
consider brackets of the form

{f, g}= {f, g}a t
a , (12)

where we introduce an arbitrary vector field in TΣ with
components ta, the origin of which we will discuss in the
following section on quantization. The only classical re-
quirement that we will make on this field concerns its nor-
malization N(d) = gabt

atb which may depend on the di-
mension of the parameter spacetime Σ. It should be such
that N(1) = −1 so that the usual Poisson bracket may
emerge when d = 1 with gσσ = −1. It turns out that the
bracket so defined satisfies the formal algebraic properties
of the Poisson bracket, which we state for phase space func-
tions f and g and real numbers c (for other definitions of
Poisson brackets within the de Donder–Weyl formalism,
compare [15–17]).
The Poisson bracket is antisymmetric and annihilates

constants,

{f, g}=−{g, f} , (13a)

{f, c}= 0 ; (13b)

it is R-linear in f and g (where linearity in the second argu-
ment follows by antisymmetry),

{f1+f2, g}= {f1, g}+{f2, g} , (14a)

{cf, g}= c {f, g} ; (14b)

the Poisson bracket further satisfies a product rule and, im-
portantly, the Jacobi identity:

{f1f2, g}= {f1, g} f2 + f1 {f2, g} , (15a)

{{f, g} , h}+{{g, h} , f} + {{h, f} , g} = 0 . (15b)

The introduction of the vector field ta provides another
advantage, again with a view towards quantization: it al-
lows us to achieve a one to one correspondence between the
fields qi and the contractedmulti-momenta pi =−tapai . We
find the covariant Poisson brackets

{
qi, qj

}
= 0 , (16a)

{pi, pj}= 0 , (16b)
{
qi, pj

}
=−N(d)δij . (16c)

Brackets including the covariant Hamiltonian generate
the following expressions, similar to those appearing in the
covariant Hamiltonian equations of motion (7); the fact
that there is no precise agreement is due to the appearance
of the vector field ta:

{
qi,H

}
= ta∇aq

i , (17a)

{pi,H}=−N(d)∇ap
a
i . (17b)

These brackets are useful in evaluating the evolution equa-
tion for phase space functions with respect to the parame-
ters given by the coordinates of Σ. We calculate

{f,H}=
∂f

∂qi
ta∇aq

i+
∂f

∂pai
ta∇bp

b
i , (18)
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which may be rewritten as

ta∇af −{f,H}− t
a∇0af =

∂f

∂pbi

(
ta∇ap

b
i −
{
pbi ,H

})
.

(19)

This is the form of the general evolution equation which
we will use as an important ingredient of the quantization
procedure. Note that the parameter space derivatives of
the phase space function f are evaluated along the integral
curves of the vector field ta. The derivative operator ∇0a
acts only on the σa-dependence of f not coming in through
the coordinates and momenta. A closer inspection of the
equation also reveals that it is trivially satisfied for any
phase space function linear in the momenta, e.g., for pai or
tap
a
i . This means we have to supplement it with (17b).

2.4 Hamiltonian mechanics on one-dimensional Σ

The results and constructions above are in complete anal-
ogy to the standard Hamiltonian treatment of classical me-
chanics which is, however, restricted to a one-dimensional
parameter space Σ, with time coordinate σ, if diffeomor-
phism invariance is required.
The Hamiltonian formalism of de Donder and Weyl re-

duces to the standard one for d= 1. To see this more ex-
plicitly, note that the TΣ index a of the multi-momentum
pai can merely take a single value in this case corresponding
to the single coordinate σ on Σ, which may be suppressed.
The manifold, its tangent and cotangent spaces are all
locally isomorphic to the real numbers. The normaliza-
tion requirement for the single-component vector field en-
forces tσ = 1 because of our signature convention gσσ =−1.
Thus we obtain agreement between our covariant Poisson
bracket and the standard one. The equations (16) reduce
to the canonical Poisson brackets, and (17) become equiva-
lent to the Hamiltonian equations. The right hand side of
the phase space evolution equation (19) cancels; what re-
mains is the well-known time evolution formula

d

dσ
f −{f,H}−

∂

∂σ
f = 0 . (20)

3 Covariant canonical quantization

Following Dirac, the quantization of a system in classi-
cal mechanics takes as its starting point the Hamiltonian
formulation. The canonical variables are promoted to op-
erators acting on a Hilbert space, and the Poisson brackets
to commutators. With our new covariant Hamiltonian for-
malism, we will now mimic these steps.

3.1 Quantization postulates

As the bracket {f, g} that we have defined above has the
same algebraic properties as the Poisson bracket, we pro-
mote it to a commutator of operators in exactly the same
way,

{f, g} �→ −ild−1[f̂ , ĝ] . (21)

According to a famous argument of Dirac [18], this is in
fact the only consistent quantization postulate, if the quan-
tum bracket is required to preserve its classical algebraic
properties. Phase space functions f and g have been re-
placed by operators on some Hilbert space, denoted by
a hat. The imaginary unit is required to imply that −i [·, ·]
is self-adjoint for self-adjoint entries (with respect to the
Hilbert space inner product which we will define below).
In our units, where c= 1 and h̄= 1, we have to introduce
another independent length scale l, which we might choose
to be the Planck length lP, to compensate the dimensions
of the derivatives with respect to the canonical variables
that appear in our Poisson bracket. This result does not de-
pend on the dimension of the fields qi; it merely assumes
the dimension of the LagrangianL is (length)−d. Note that
the necessity of a fundamental length scale for quantization
appears only on manifolds Σ of dimension d > 1.
Now we have to think about the vector field ta in

our bracket definition. The obvious choice seems to be
a classical timelike vector field on Σ, with normalization
N(d) =−1 for any dimension. However, this would have
several undesirable consequences; firstly, no such vector
field was included in the classical theory in the original
formulation (2). Thus additional input would be necessary
for the quantum theory. Such input would not be univer-
sal in the sense that the chosen timelike field could differ
for different quantum systems under consideration. Sec-
ondly, this would amount to introducing a space-time split
of Σ into the product of a family of timelike curves and
their corresponding normal surfaces, thereby introducing
all of the problems associated with the canonical proced-
ure. Thus the aim of an intrinsically higher-dimensional
quantization procedure on Σ would be lost. But what op-
tions are left now of choosing a vector field which is implic-
itly given on any Σ?
To answer this question, we have to resort to some more

geometry. On every curved background manifold Σ (ad-
mitting a spin structure) exists an algebra of Dirac matri-
ces γa with the property that

γaγb+γbγa = 2gab . (22)

As usual, these Dirac matrices are related to those of the
local Lorentzian tangent spaces Γµ by the vielbeins e

µ
a as

γa = e
µ
aΓµ. The vielbeins form the metric as gab = e

µ
ae
ν
bηµν .

The normalization of the Dirac matrices gives γaγ
a = d.

This leads us to propose the following quantization postu-
late for the vector field ta:

ta �→ −in(d)γa , (23)

which impliesN(d) =−dn(d)2. To satisfy the requirements
N(1) = −1 and tσ = 1 for the one-dimensional case, we
note that the only Dirac matrix in d= 1 is Γ σ = i, so that
the normalization function n(d) must be chosen such that
n(1) = 1. Otherwise n(d) is quite arbitrary and must be
fixed by application of the theory, which remark also ap-
plies to the fundamental length scale l.
It is worth noting that the appearance of the Dirac ma-

trices in this context has a historical parallel in Dirac’s



G.M. von Hippel, M.N.R. Wohlfarth: Covariant canonical quantization 865

original derivation of the Dirac equation [19, 20], where
a universal object with a covariant vector index was also
required to fulfill the demands of covariance.

3.2 Quantum evolution – Dirac is Schrödinger

We will now motivate a quantum evolution equation based
on our classical covariant Hamiltonian picture, which turns
out to unify the Dirac and the Schrödinger equation.
The multi-symplectic phase space is spanned by the

canonical variables qi and pai . Any “proper” phase space
function f depends on the coordinates of the parameter
space Σ only through these variables. For the operators f̂
associated to such phase space functions we now analyze
the requirement that the classical evolution equation (19)
holds in its quantum version as follows:

ild−1
[
f̂ , Ĥ
]
− in(d)

(
∇/ f̂
)

(24)

= S

(
∂̂f

∂pai

(
ild−1

[
p̂ai , Ĥ

]
− in(d) (∇/ p̂ai )

)
)

.

The operator S denotes a symmetrization of the canonical
variables, which are now operators, and we use Feynman’s
shorthand notation∇/ = γa∇a. Noting that (∇/ f̂) = [∇/ , f̂ ]
in the action on states, the above equation can be rewritten
in the form

[
f̂ , Ĥ+n(d)l−d+1∇/

]
= S

(
∂̂f

∂pai

[
p̂ai , Ĥ+n(d)l

−d+1∇/
]
)

.

(25)

This equation holds for all operators, if and only if Ĥ+
n(d)l−d+1∇/ is a constant independent of the canonical
variables. For d= 1, this reduces to Ĥ+i∂σ. To obtain the
same result as in conventional quantum mechanics in this
limit, we have to set Ĥ+n(d)l−d+1∇/ = 0. However, note
that this type of derivation in quantummechanics does not
produce the Schrödinger equation, which is Ĥ− i∂σ = 0,
acting on Schrödinger picture states. This is because the
quantization of the classical evolution equation leads to
an operator equation valid in the Heisenberg picture. The
unitary change of pictures is responsible for the change of
signs.
We assume, as will be justified in Sect. 3.3 as it requires

some development of the theory, that the same change of
signs occurs here. Thus we finally arrive at the quantum
evolution equation, as an equation acting on Σ-dependent
states:

(
Ĥ−n(d)l−d+1∇/

)
|ψ(σa)〉= 0 . (26)

Note that the quantum evolution effectively does not re-
quire the terms appearing in the symmetrization operator,
which thus need not be specified. This is an advantage
because it is not consistently possible to do so even in
conventional quantum mechanics: no map of phase space
functions into an operator algebra exists, compatible with
the Poisson bracket. An attempt to rectify this situation is

made by deformation quantization, employing as operators
formal power series in the Planck quantum h̄; see [21, 22]
for reviews.
The above equation gives the operator Ĥ the dimension

of mass times l−d+1. Supposing, in an expansion in terms
of the canonical variables, that there is a constant term in
Ĥ, we find that both the Schrödinger and the Dirac equa-
tion follow from the same quantization procedure. The
Schrödinger equation is relevant for a quantization of fields
xi : Σ ∼= R→ Rn, and the Dirac equation corresponds to
quantized fields on a parameter spacetime Σ ∼=M1,3. This
will be further illustrated below. Here we only note that,
in d > 1, the wave functions will automatically become
spinors.
The quantum evolution equation in the form (26)

has been conjectured before by Kanatchikov [6] and
Navarro [23] on the basis of analogies between the Dirac
equation and conventional quantum mechanics. Here we
have presented for the first time a physically reasonable
derivation of (26) from first principles, based solely on the
two quantization postulates (21) and (23).

3.3 The local evolution operator
and the Heisenberg picture

We shall now introduce the covariant Heisenberg picture,
and in this context we will justify the remaining assump-
tions going into the derivation of the quantum evolution
equation (26). To clarify the calculations we will use sub-
scripts S and H for Schrödinger and Heisenberg picture
quantities, respectively.
The first notion we need is that of an evolution op-

erator Û(σ, σ0), with the help of which a Σ-dependent
Schrödinger picture state may be written in terms of
a Σ-independent Heisenberg picture state:

|ψ(σ)〉S = Û(σ, σ0) |ψ(σ0)〉H . (27)

The consistency of expectation values requiresU to be uni-
tary in the sense Û#Û = 11 (cf. Sect. 3.5 below).
On curved parameter spacesΣ, such an evolution oper-

ator can only be defined locally, i.e., in a sufficiently small
neighborhood of a point p ∈ Σ. If q is another point in
this neighborhood, then there is a unique geodesic join-
ing p and q. The corresponding evolution operator Û(q, p)
can be written as Û(σ, σ0) in a geodesic normal coordinate
system. Substituting the above state expansion into the
quantum evolution equation we find

ĤSÛ(σ, σ0)−n(d)l
−d+1∇/ Û(σ, σ0) = 0 . (28)

Solving this equation to first order in an infinitesimally
small displacement δσ then gives

Û(σ0+ δσ, σ0) = 11+
ld−1

dn(d)
δσaγaĤS . (29)

The adjoint Û#, again to first order, follows from
(γaĤS)

# =−ĤSγa. Hence Û is unitary, if and only if
[
γa, ĤS

]
= 0 , (30)
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which we must require. (The examples below show that
this relation usually holds.) The evolution operator for
finite coordinate differences within the local neighbor-
hood follows from the limiting procedure Û(σ, σ0) =
lim (Û(σ, σ− δσ) . . . Û(σ0+ δσ, σ0)) for δσ→ 0; in conse-
quence, it is unitary as well.
We are now in the position to calculate the equation

of motion for Heisenberg picture operators f̂H = Û
#f̂SÛ .

Using the same steps as in conventional quantum mechan-
ics yields

∇/ f̂H−n(d)
−1ld−1

[
f̂H, ĤH

]
=
[
∇aÛ

#, γa
]
Û f̂H . (31)

The right hand side of this equation does not contribute.

This is easily seen by noting that
[
∇aÛ#, γa

]
=
[
∇aÛ , γa

]#

and using (29) to determine ∇aÛ ∼ γaĤS. Thus one finds[
∇aÛ , γa

]
∼
[
γa, ĤS

]
, the vanishing of which was required

by the existence of the Heisenberg picture. The Heisenberg
equation of motion

n(d)l−d+1∇/ f̂H−
[
f̂H, ĤH

]
= 0 (32)

follows. Using the same method as in the derivation of
the quantum evolution equation in Sect. 3.2 one thus finds
ĤH+n(d)l

−d+1∇/ = 0 in the Heisenberg picture, fully jus-
tifying the change of sign we made in obtaining (26).
The Heisenberg equation of motion (32) will play an

important role in showing that our theory indeed has the
correct classical limit in Sect. 3.6 below.

3.4 Canonical operators in the Schrödinger picture

In the covariant Schrödinger picture, all operators, includ-
ing the covariant Hamiltonian, act on states which are
elements of some Hilbert space H and depend on the co-
ordinates of Σ, i.e. |ψ(σa)〉. We wish to find a realization
of these operators acting on wave functions in an explicit
Schrödinger representation; for this purpose we have to in-
troduce a basis of H, which is conveniently given by the
states

|qα〉= |q〉⊗ eα , (33)

where |q〉 are eigenstates of the field operators q̂i, i.e.
q̂i |q〉= qi |q〉, and eα are the canonical basis vectors of the
representation space of the Dirac algebra. The dual states
are given by

〈αq|= 〈q|⊗ωα , (34)

where {ωα} is the dual basis of {eα}, such that the normal-
ization condition becomes

〈αq | q̃β〉= δ
α
β δ(q− q̃) . (35)

In the basis {|qα〉} any state of the Hilbert space can be
expanded as

|ψ〉=

∫
dq |qα〉ψ

α(q) . (36)

The components ψα(q) = 〈αq |ψ〉 with respect to this ba-
sis give the spinorial Schrödinger picture wave function. In
this notation we have suppressed the Σ-dependence; more
precisely, one should write ψα(σa;q). The identity opera-
tor onH has a partition of the form

11 =

∫
dq |qα〉 〈

αq| . (37)

The canonical operators should satisfy the commuta-
tion relations

[
q̂i, q̂j

]
= 0 , (38a)

[p̂i, p̂j ] = 0 , (38b)
[
q̂i, p̂j

]
= idn(d)2l−d+1δij , (38c)

which follow from an application of the two quantization
postulates to the classical Poisson bracket equations (16).
It would seem to be convenient at this stage to remove the
dimension dependence of the canonical commutation rela-
tions by setting n(d) = 1/

√
d, but we emphasize again that

n(d) should be fixed by application. To study the action
of the canonical operators on wave functions, we need the
following matrix elements:

〈αq | p̂i | q̃β〉= idn(d)
2l−d+1δαβ

∂

∂q̃i
δ(q− q̃), (39a)

〈αq | γa | q̃β〉= (γ
a)αβδ(q− q̃) , (39b)

where the first identity follows from an expansion of〈
αq |
[
q̂i, p̂i

]
| q̃β
〉
, using (38c). Now we act with our oper-

ators on arbitrary states, which yields

q̂ |ψ〉=

∫
dq |qα〉 (qψ

α(q)) , (40a)

p̂ |ψ〉=

∫
dq |qα〉

(
−idn(d)2l−d+1

∂

∂q
ψα(q)

)
,

(40b)

γa |ψ〉=

∫
dq |qα〉

(
(γa)αβψ

β(q)
)
. (40c)

Thus q̂i and γa act multiplicatively on wave functions,
whereas the p̂i essentially act as derivative operators. The
commutation relations stated above are clearly satisfied.
A further important point is missing for a success-

ful transition from the classical to the quantum theory.
The classical covariant Hamiltonian depends on the phase
space variables qi and pai , so that the Hamiltonian opera-
tor would seem to depend on the operators p̂ai for which we
have not yet given a representation. However, it is always
possible to replace these operators by p̂i, as we will now
show. Acting on wave functions the p̂ai are realized by

p̂ai ∼−n(d)l
−d+1γa

∂

∂qi
, (41)

which may be derived from an application of our quantiza-
tion postulates to the classical Poisson bracket {qi, paj }=
taδij . It follows that any occurrence of p̂

a
i can be replaced by

p̂ai =−
i

dn(d)
γap̂i , (42)
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so that the quantum Hamiltonian becomes effectively
a function of the operators q̂i and p̂i. On one-dimensional
Σ one reobtains p̂σi = p̂i as in the classical theory.
In the case where the fields qi form the coordinates of

a target space manifoldM , one must take care of appropri-
ate integrationmeasures in the state expansions, and of the
fact that δ(q− q̃) is a density. The appropriate Schrödinger
representation would contain covariant, not partial, differ-
entiation operators onM .

3.5 Hilbert space and probability interpretation

The Σ-dependent states |ψ(σa)〉 are elements of a Hilbert
space H. The essential algebraic structure on a Hilbert
space is a scalar product, i.e., a bilinear form 〈·|·〉 : H×
H→ R. We may define such a scalar product in terms of
the wave functions corresponding to Hilbert space states:

〈ψ|φ〉 =−i

∫
dqψ̄φ=−i

∫
dqψ†Γ 0φ . (43)

Note that the appearance of the gamma matrix Γ 0 of the
local Lorentzian tangent spaces guarantees that the scalar
product maps to a diffeomorphism scalar of Σ. The spinor
indices of the wave functions are suppressed, as are theirΣ-
and field-dependence.
The necessary requirement that the scalar product

should return a scalar function on Σ results in its indefi-
niteness: indeed,

〈ψ|ψ〉=−i

∫
dqψ†Γ 0ψ 
=

∫
dqψ†ψ , (44)

where the Dirac matrix mixes the spinorial components
to prevent a generically positive result. The indefiniteness
is a feature of quantization on manifolds Σ of dimension
d > 1. For d= 1, the non-equality above becomes an equal-
ity (and ψ† is simply the complex conjugate).
One of the consequences of this construction is the fol-

lowing: the self-adjoint operators with respect to our scalar

product are no longer Hermitian with Ô† = Ô. By defin-
ition, self-adjoint operators satisfy

〈
Ôψ |φ

〉
=
〈
ψ | Ôφ

〉
for

all ψ and φ. Here this implies Ô is self-adjoint, if and only if

Ô# ≡−Γ 0Ô†Γ 0 = Ô . (45)

But self-adjoint operators are not guaranteed to have real
eigenvalues because of the indefiniteness of the scalar prod-
uct, which may produce null states with 〈ψ|ψ〉 = 0. An-
other condition is needed: a self-adjoint operator is orthog-
onally diagonalizable with real eigenvalues if it is a so-
called Pesonen operator satisfying

〈
ψ | Ôψ

〉

= 0 for all null

states ψ [24]. For the special case d= 1, we have Γ σ = i so
that the relation above selects the Hermitian Ô, as is the
case in conventional quantum mechanics.
The standard interpretation of quantum mechanics in-

terprets the squared modulus |ψ|2 of the Schrödinger wave
function ψ as a probability density. This is enabled by
the fact that the Schrödinger equation guarantees the con-
stancy of the total probability

∫
dxψ†ψ in time. To give

a similar interpretation here, we need a similar statement.
Since the square 〈ψ|ψ〉 is no longer positive-definite for
d > 1 and hence no longer admits a probability interpreta-
tion, we need to find another quantity that does. Consider
the following vector current on Σ:

ja =−

∫
dq ψ̄γaψ . (46)

We assume that our covariant Hamiltonian has essentially
real eigenvalues, meaning that it is self-adjoint with Ĥ# =

−Γ 0Ĥ†Γ 0 = Ĥ. This is consistent because Ĥ is directly re-
lated to γa∇a, and we have γa† = Γ 0γaΓ 0 and Hermitian
i∇a. Then the Dirac form of relation (26) is sufficient to
prove that ja is conserved,

∇aj
a = 0 . (47)

Locally, a conserved current implies a conserved charge: in
normal coordinates on Σ,

∂σ0

∫
dd−1σ j0 = 0 . (48)

Thus we can interpret the integral of j0 as the total
probability to find the fields in any configuration q any-
where on the spatial part of Σ. This also means that

ρ(σa;q) =−ψ̄(σa;q)γ0(σ)ψ(σa;q) , (49)

gives the probability density of finding the field configura-
tion q at a given point with coordinates σa ofΣ. In normal
coordinates, the probability density becomes −ψ̄Γ 0ψ =
ψ†ψ, and is positive-definite. In the one-dimensional case
Σ ∼= R, we can always find global normal coordinates,
so that we once again recover conventional quantum
mechanics.
The wave function ψ(σa;q) contains all the necessary

information to reconstruct the Schrödinger wave func-
tional of the conventional canonical approach in cases
where the latter exists, as has been shown in [25, 26]. This
suggests that the covariant canonical approach is at least
as powerful as the conventional one; more powerful, in fact,
since it works on backgrounds that do not allow the con-
ventional spacetime foliation by spatial hypersurfaces.

3.6 Classical limit and Ehrenfest equations

To see how the classical limit emerges from our formalism,
let us consider the following Ehrenfest-type theorem, aris-
ing from the expectation value of the Heisenberg equation
of motion (32) above:

n(d)l−d+1∇a
〈
γaf̂
〉
=
〈[
f̂ , Ĥ
]〉
. (50)

Because the inner product is picture-independent, this
equation in particular holds in the Schrödinger picture. As-
suming now a classical covariant Hamiltonian of the form

H =−
α

2
pai p

i
a+V (q

i) (51)
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for constant α, one finds Ĥ = αp̂ip̂i/(2dn(d)
2)+V (q̂i). We

wish to evaluate the theorem for f̂ �→ p̂j as well as for f̂ �→
γaq̂

j . We use the commutator relations

[p̂j , Ĥ] =−idn(d)
2l−d+1

∂V

∂qj
(q̂i) , (52a)

[γaq̂
j , Ĥ] = iαl−d+1γap̂

j (52b)

to arrive at the following equations:
〈
∂H

∂qj
(q̂i, p̂bk)

〉
=−∇a

〈
p̂aj
〉
, (53a)

〈
∂H

∂paj
(q̂i, p̂bk)

〉

=∇a
〈
q̂j
〉
. (53b)

Therefore, the classical covariant Hamiltonian field equa-
tions (7) are fulfilled within expectation values in the form
of Ehrenfest equations. Interestingly, no choice of the nor-
malizations of the length scale l or of n(d) was required to
obtain this classical result, showing once more the consis-
tency of the theory.

4 Elementary applications

In this section we will give several simple applications of
the covariant canonical quantization method. This demon-
strates the technique in some detail, but, more impor-
tantly, yields a number of interesting results: the Klein–
Gordon equation arises as the wave equation of the rel-
ativistic point particle without any need to refer to the
relativistic energy-momentum relation; the quantization
of any bosonic field on an extended parameter space Σ
with d > 1 creates spinorial wave functions; in particular,
the Dirac equation emerges from the Klein–Gordon La-
grangian, along with the prediction of a fermion mass gap
and a hierarchy of fermions that differ only by their masses.

4.1 Relativistic point particles –
the Klein–Gordon equation

The simplest application of our quantization formalism is
to the relativistic mechanics of a point particle. Completely
side-stepping its usual derivation from the relativistic en-
ergy relation, we will find that the quantum wave equation
is the Klein–Gordon equation.
Consider the following action for fields xi : R→M1,3

which describe the worldline embedding into a flat
Minkowski spacetime,

S =

∫
dσ
√
−gσσ

1

2

(
m1g

σσ∇σx
i∇σx

jηij+m2
)
. (54)

Variation yields the equation of motion ∂σ(
√
−gσσ

gσσ∂σx
i) = 0, and also the gravitational constraint

gσσ∇σxi∇σxjηij =m2. Both of these equations are needed
to show that the above action is classically equivalent
to the standard action of the relativistic point particle,

m
∫
dσ
√
−∂σxi∂σxjηij , for two mass parameters m1 and

m2 which satisfym1m2 =m
2.

The covariant momenta are pσi =m1g
σσ∇σxjηji, and

yield the covariant Hamiltonian H = − 1
2m1
gσσp

σ
i p
σ
j η
ij

− 12m2. Using the Schrödinger representation of the mo-
mentum operators on wave functions returns the quantum
wave equation

(
−
1

2m1
�−m2

2
− i∂σ

)
ψ(σ;xi) = 0 , (55)

where the box denotes the d’Alembertian on M1,3. We
still have to deal with the gravitational constraint on the
classical momenta: in its quantum version it reads (�+
m2)ψ = 0. This can be satisfied consistently with the wave
equation by choosing ∂σψ(σ;x

i) = 0. The resulting wave
function is then automatically independent of σ, and the
equation for ψ(xi) becomes the Klein–Gordon equation on
M1,3.
The quantum wave equation is a Schrödinger equation

with time parameter σ, but independence of the wave func-
tion of this parameter is forced by the constraint. In this
sense, classical reparametrization invariance directly im-
plies the Klein–Gordon equation.

4.2 Free bosonic strings – Weyl spinors

One of the most characteristic features of covariant canon-
ical quantization is the fact that any bosonic field on a pa-
rameter space of dimension d > 1 produces spinor wave
equations. To illustrate this point in the simplest setup, we
consider free bosonic strings on a flat target space, given
as maps Σ →M1,n from the two-dimensional worldsheet
Σ into Minkowski spaceM1,n. We employ the Polyakov
action

S =−

∫

Σ

d2σ
√
−g
1

2
gab∂a X

i∂bX
jηij . (56)

which is classically equivalent to the Nambu–Goto ac-
tion that measures the area of the string worldsheet, if
the gravitational constraint gabgcdη∗cd = η

∗cd, where η∗ab =
∂aX

i∂bX
jηij is the pull-back of η to the worldsheet, is im-

plemented. The covariant momenta are derived as pai =
−∂aXi and give rise to H = −pai p

i
a/2. This leads to the

Schrödinger picture wave equation
(
l−1n(2)�+γa∂a

)
ψ(σb;Xµ) = 0 , (57)

where � denotes the target space d’Alembert operator on
M1,n. It is illustrative to use the separation ansatz ψ =
Ψ(σa)Φ(Xµ) with spinorial Ψ for the wave function. This
introduces a separation constantM , and generates the two
separate equations

(
�+ lMn(2)−1

)
Φ= 0 , (58a)

(γa∂a−M)Ψ = 0 . (58b)

Thus the quantization of strings generates Weyl spinors on
the two-dimensional worldsheet, whose massM is linked to
a Klein–Gordon equation on the target spacetime.
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As noted above, it is necessary to satisfy the gravita-
tional constraint. Classically, we may rewrite it as paipbi −
gabpcip

i
c/2 = 0, which is symmetric. Keeping the symmetry

we hence find the Schrödinger representation

(
−γ(aγb)+ gab

)
p̂ip̂i = 0 . (59)

The expression in brackets is identically zero by the prop-
erties of the Dirac algebra. Surprisingly the constraint is
satisfied automatically in the quantum theory. However,
the quantization of the string in this formalism has no
discernible relation to string theory, where the quantum
requirement of the gravitational constraint leads to the Vi-
rasoro algebra.

4.3 Free scalar fields – the Dirac equation

The free scalar field φ : Σ1,3→ R on a four-dimensional
Lorentzian spacetimeΣ1,3 with metric g is governed by the
Lagrangian

L=−
1

2
gab∂aφ∂bφ−

1

2
m2φ2 . (60)

The covariant momenta follow as πa = −∂aφ and yield
H =−πaπa/2+m2φ2/2. From quantization we hence ob-
tain the Schrödinger picture wave equation

(
−
2n(4)

l3
∂2φ+

l3m2

2n(4)
φ2−γa∂a

)
ψ(σa;φ) = 0 . (61)

To illustrate the consequences of our theoretical con-
struction, it is useful to consider a separation ansatz
ψ = Ψ(σa)Φ(φ) for the wave function, where only Ψ is
taken spinorial. This introduces a separation constantM ,
and the wave equation generates two separate equations of
the form

(
−
2n(4)

l3
∂2φ+

l3m2

2n(4)
φ2
)
Φ=MΦ, (62a)

(γa∂a−M)Ψ = 0 . (62b)

Thus the spacetime dependence of the wave function is
described by a Dirac equation with mass M . However,
this mass is not unconstrained: a spectrum of allowed
masses is generated by the first equation, which is just
the Schrödinger equation of a one-dimensional harmonic
oscillator with frequency ω = 2m. The mass spectrum is
therefore given by

Mk =m (2k+1) (63)

with integer k ≥ 0. While this spectrum does not look par-
ticularly appealing phenomenologically, it should be noted
that we obtained the prediction of a mass hierarchy of oth-
erwise identical Dirac particles from the non-interacting
Klein–Gordon Lagrangian only. With the addition of in-
teractions to the scalar action, more complex mass spectra
could be generated, leading to the possibility of obtain-
ing the generations of the standard model from a suitably

tuned interacting scalar Lagrangian. Another important
prediction from (62) is the existence of a mass gap for
the fermions: M = 0 is generally not a solution if the har-
monic potential V (φ) ∼ φ2 is replaced by a generic poten-
tial V (φ).

4.4 Local gauge invariance – gauge fields

We have seen that the quantization of pure scalar field
models generates fermionic particles with an allowed mass
spectrum given by the covariant Hamiltonian of the scalar
field. Phenomenological relevance additionally requires
these fermions to be charged. A mechanism to serve this
purpose has been identified by Weyl [27] a long time ago,
and we will now demonstrate its effect.
The basic observation underlying this mechanism is

the invariance of the interpretationally relevant probability
current ja =−i 〈ψ | γa |ψ〉 defined in (46) under local phase
shifts of the wave function, so-called gauge transform-
ations. These are transformations ψ �→ eieΛψ under a func-
tion Λ : Σ → R. The quantum evolution equation (26),
however, is only invariant under global gauge transform-
ations with constant Λ. If, in addition, local invariance is
required, we have to amend this equation by the introduc-
tion of a gauge field:

(
Ĥ−n(d)l−d+1(∇/ − ie 
A)

)
|ψ〉= 0 . (64)

It now follows that if |ψ〉 is a solution of this equation, then
so is the locally gauge transformed eieΛ |ψ〉, as long as the
gauge field transforms at the same time asAa �→Aa+∂aΛ.
The resulting equation is essentially the Dirac equation for
particles of mass

〈
Ĥ
〉
and charge e.

To make this statement more precise, observe that in
order to speak about the spectrum of the theory we do not
require knowledge about the probabilities for the original
scalar fields, but only about the generated fermions. This
means we may consider the integrated expectation value of
the quantum evolution equation as a functional of ψ,

S[ψ] =

∫

Σ

ddσ 〈ψ|
(
−n(d)−1ld−1Ĥ+∇/ − ie 
A

)
|ψ〉 ,

(65)

in which the wave function’s dependence on the original
scalar fields is effectively integrated out. Indeed, if we as-
sume the wave equation has been solved by a product
ansatz ψ = Ψ(σa)Φ(φ) as in the previous examples, we find

SΦ[Ψ ] =

(∫
dφΦ†Φ

)∫

Σ

ddσ Ψ̄
(
∇/ − ie 
A− M̃

)
Ψ , (66)

for one of the rescaled mass eigenvalues M̃ = n(d)−1ld−1∫
dφΦ†ĤΦ/

∫
dφΦ†Φ in the mass spectrum generated by

the scalars’ covariant Hamiltonian. So integrating out the
original scalar field freedom, because it is not observable,
returns precisely the Lagrangian theory for the Dirac field
with mass M̃ .
Now consider a multiplet of N scalar fields φi with

a Lagrangian which is invariant under the action of some
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nonabelian subgroupG of SO(N). In this case, the covari-
ant Hamiltonian will inherit the G-invariance, resulting in
a degeneracy in the spectrum of the theory. The energy
levelsMn can then be labelled by the irreducible represen-
tations ofG, with the degeneracy of each level given by the
dimension dn of the irreducible representation under which
it transforms. A solution of the quantum evolution equa-
tion can then be decomposed in terms of eigenfunctions of
the covariant Hamiltonian:

ψ(σ, φ) =
∞∑

n=0

dn∑

α=1

Ψn,α(σ)Φn,α(φ) . (67)

Putting this decomposition into the definition of S[ψ]
above and using the orthogonality relation

∫

M
dφΦ†n,α(φ)Φm,β(φ) = δm,nδα,β (68)

for the wave functions, we arrive at the action for Ψ

S[Ψ ] =
∞∑

n=0

∫

Σ

dσΨ̄n,α
(
∇/ − M̃n

)
Ψαn , (69)

where each kind of fermion has a massMn and is invariant
under a SU(dn) symmetry in addition to the U(1) symme-
try discussed above. Using the same arguments as before,
these SU(dn) symmetries should also be gauged, giving
rise to a spectrum of nonabelian gauge symmetries.
In the case of a finite scalar symmetry group G, there

is only a finite number of irreducible representations, and
correspondingly the gauge group of the fermionic the-
ory then is a finite product of SU(N) gauge groups. For
continuous G, an infinite product of SU(N) factors en-
sues. Groups that could give a standard model-like gauge
group SU(3)×SU(2)×U(1) (although we haste to point
out that this simple model does not give the chiral cou-
plings of the standard model) include the point groups Td
and O.
Hence, covariant canonical quantization with the ad-

ditional requirement of local gauge invariance is able to
produce, from a scalar field Lagrangian, all particles (so
far) observed in Nature, namely fermions and gauge fields.
While their masses are constrained by the covariantHamil-
tonian of the original classical scalar field theory, the
charges are additional input at the quantum level of the
theory. In order to obtain a more complete theory, ap-
propriate gauge-invariant dynamics for the gauge fields
have to be added at this stage, which is a freedom that we
have.

5 Discussion

Considering fields as maps from a parameter space Σ to
a target space M , we have constructed a covariant quan-
tization method that keeps the diffeomorphism invariance
between the parameters of Σ intact. Covariant canonical
quantization is based on the classical Hamiltonian the-
ory developed by de Donder [1] and Weyl [2] which makes

use of a finite-dimensional multi-symplectic phase space,
where every field has a set of conjugate momenta associ-
ated to each of its partial derivatives. The classical theory
is completely equivalent (in the sense of generating the
same solutions) to the conventional Hamiltonian point of
view, avoiding, however, the explicit breaking of diffeo-
morphism invariance that arises from singling out a time
coordinate normal to an assumed foliation of Σ by spatial
hypersurfaces.
We have introduced the notion of a covariant Pois-

son bracket within the classical theory, before applying
two well-motivated quantization postulates. The first pos-
tulate replaces, according to Dirac’s argument, the Pois-
son bracket of phase space functions by the commutator
of corresponding operators acting on some Hilbert space.
The second postulate is geometrically motivated: on pa-
rameter spacetimes Σ of dimension d > 1 it introduces
the Clifford algebra of Dirac matrices into the quantum
theory. The construction is such that covariant canonical
quantization coincides with conventional canonical quan-
tization in d = 1, i.e., when the fields depend only on
time.
The two quantization postulates, applied to the clas-

sical de Donder–Weyl theory, for the first time allow for
the derivation of a quantum evolution equation in terms
of the covariant Hamiltonian, which had been conjectured
before on the mere basis of analogies [6, 7]. This evolution
equation effectively unifies the Dirac and the Schrödinger
equations. We have further developed the theory in the co-
variant Schrödinger picture, including a discussion of the
representation of the field and multi-momentum operators,
and the relevant Hilbert space. Diffeomorphism invariance
requires an indefinite inner product on the Hilbert space,
whose consequences for the diagonalizability of operators
and their eigenvalues have been discussed. We have also
provided a probability interpretation for the fields’ wave
function.
Further development of the theory could progress in

several directions. One of the obvious questions concerns
the Heisenberg picture for the theory. The formal solu-
tion for the evolution operator follows from (29) as the

path-ordered exponential U(σ, σ0) ∼ P exp
(
ld−1/(dn(d))

∫ σ
σ0
Hγadξ

a
)
. As such it is only locally defined, and path-

dependent, at least on generic curved spacetimes Σ where
we had to specify the path along which the exponent is
integrated by using geodesic normal coordinates on suffi-
ciently small neighborhoods. This raises questions about
the possibility of developing scattering theory in these
cases. Another question is that of the quantization of grav-
ity. Although we havemade use of gravitational constraints
in two of the examples, it is not so clear how the theoretical
setup could be consistent with additional dynamics for the
background metric on the parameter spaceΣ.
We have discussed a number of elementary applications

of the formalism with some surprising and very interesting
results. The quantization of the relativistic point particle
immediately yields as quantum wave equation the Klein–
Gordon equation, without conceptually employing the rel-
ativistic energy momentum relation. Though there is no
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readily discernible connection to string theory, it is inter-
esting to note that the quantization of bosonic strings pro-
duces Weyl spinors on the worldsheet whose mass is linked
to a Klein–Gordon equation on the target space. This fact
expresses one of the most characteristic features of covari-
ant canonical quantization, namely that the quantization
of any field on Σ with d > 1 produces a spinorial wave
equation.
We have shown that a purely scalar classical La-

grangian can produce, upon quantization, a theory of
Dirac fermions interacting with gauge fields. The latter
come into the theory by requiring the local gauge invari-
ance of the interpretationally relevant probability current
also on the level of the wave equation. This means that the
basic equations of the quantum field theory of the stan-
dard model may emerge from a classical scalar field theory
as wave equations. Several interesting results are obtained
along with this mechanism.
The emergence of spinor fields as a purely quantum

phenomenon bypasses the usual need for a semi-classical
treatment of the Dirac equation, which emerges as a fully
quantum equation from the very beginning. More intrigu-
ingly, on the phenomenological side, the procedure of
covariant canonical quantization provides a new mech-
anism to unify particles of different masses, which leads
to an (at least qualitative) explanation of the gener-
ations of the standard model in terms of a self-interacting
scalar field. It should be noted that in this framework
fermionic masses are generated without a Higgs mech-
anism. Instead, the mass and self-interaction of the un-
derlying scalar field manifest themselves by generating
a mass spectrum for the effective fermion field which is
the spacetime part of the scalar field’s quantum wave
function.
It is interesting to speculate where a scalar model

complicated enough to yield the standard model upon
quantization could come from in the first place. One
possibility seems to be the compactification of a higher-
dimensional bosonic, maybe gravitational, theory. Such
compactifications generally produce a large number of
scalar fields as shape moduli of the internal manifold, with
self-interactions through some effective potential. If such
a potential had a minimum, one would expect it at some
negative value, due to a geometric no-go theorem [28] (see
also the discussion in [29]), thus generating a discrete mass
spectrum for the fermionic fields in the quantum theory
which could have phenomenological relevance. More spec-
ulatively still, the fact that the quantization of a purely
scalar classical theory necessarily leads to a fermionic
quantum theory might be indicating some sort of semi-
classical supersymmetry at work behind the scenes.
Covariant canonical quantization clearly does not re-

place conventional quantum field theory; rather it adds
a first quantization to the usual procedure, which then lit-
erally becomes a second quantization: first, a scalar model
generates spinorial quantum wave equations which, after
integrating out the unobservable scalar degrees of free-
dom, become the classical equations of motion underlying
the standard model. Then the quantization of these equa-
tions proceeds in standard quantum field theoretical fash-

ion. The intriguing result of this investigation is the fact
that the standard model’s classical equations of motion
for fermions and gauge fields, along with the prediction
of discrete mass spectra of identically charged particles,
are generated from the quantization of a purely scalar
classical field theory. This gives reason to hope that co-
variant canonical quantization might find further use and
applications.
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